901 research outputs found

    DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation.

    Get PDF
    We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin-related proteins. Immunoblots using an antibody raised against a non-conserved region of DSK1 show that DSK1 is greatly enriched in mitotic spindle preparations. Anti-DSK1 stains in diatom central spindle with a bias toward the midzone, and staining is retained in the spindle midzone during spindle elongation in vitro. Furthermore, preincubation with anti-DSK1 blocks function in an in vitro spindle elongation assay. This inhibition of spindle elongation can be rescued by preincubating concurrently with the fusion protein against which anti-DSK1 was raised. We conclude that DSK1 is involved in spindle elongation and is likely to be responsible for pushing hal-spindles apart in the spindle midzone

    Monotone Control of Queueing and Production/Inventory Systems

    Get PDF
    Weber and Stidham (1987) used submodularity to establish transition monotonicity (a service completion at one station cannot reduce the service rate at another station) for Markovian queueing networks that meet certain regularity conditions and are controlled to minimize service and queueing costs. We give an extension of monotonicity to other directions in the state space, such as arrival transitions, and to arrival routing problems. The conditions used to establish monotonicity, which deal with the boundary of the state space, are easily verified for many queueing systems. We also show that, without service costs, transition-monotone controls can be described by simple control regions and switching functions, extending earlier results. The theory is applied to production/inventory systems with holding costs at each stage and finished goods backorder costs

    Optimal Control of Two-Station Tandem Production/Inventory System

    Get PDF
    A manufacturing facility consisting of two stations in tandem operates in a maketo-stock mode: after production, items are placed in a finished goods inventory that services an exogenous demand. Demand that cannot be met from inventory is backordered. Each station is modelled as a queue with controllable production rate, and the problem is to control these rates to minimize inventory holding and backordering costs. Optimal controls are computed using dynamic programming and compared with kanban and buffer control mechanisms, popular in manufacturing, and with the base stock mechanism popular in inventory/distribution systems. Conditions are found under which certain simple controls are optimal using stochastic coupling arguments. Insights are gained into when to hold work-in-process and finished goods inventory, comparable to previous studies of production lines in make-to-order and unlimited demand ("push") environments

    Scheduling a Make-To-Stock Queue: Index Policies and Hedging Points

    Get PDF
    A single machine produces several different classes of items in a make-to-stock mode. We consider the problem of scheduling the machine to regulate finished goods inventory, minimizing holding and backorder or holding and lost sales costs. Demands are Poisson, service times are exponentially distributed, and there are no delays or costs associated with switching products. A scheduling policy dictates whether the machine is idle or busy, and specifies the job class to serve in the latter case. Since the optimal solution can only be numerically computed for problems with several products, our goal is to develop effective policies that are computationally tractable for a large number of products. We develop index policies to decide which class to serve, including Whittle's "restless bandit" index, which possesses a certain asymptotic optimality. Several idleness policies, which are characterized by hedging points, are derived, and the best policy is obtained from a heavy traffic diffusion approximation. Nine sample problems are considered in a numerical study, and the average suboptimality of the best policy is less than 3%

    Schnurri-3 (KRC) Interacts with c-Jun to Regulate the IL-2 Gene in T Cells

    Get PDF
    The activator protein 1 (AP-1) transcription factor is a key participant in the control of T cell proliferation, cytokine production, and effector function. In the immune system, AP-1 activity is highest in T cells, suggesting that a subset of T cell–specific coactivator proteins exist to selectively potentiate AP-1 function. Here, we describe that the expression of Schnurri-3, also known as κ recognition component (KRC), is induced upon T cell receptor signaling in T cells and functions to regulate the expression of the interleukin 2 (IL-2) gene. Overexpression of KRC in transformed and primary T cells leads to increased IL-2 production, whereas dominant-negative KRC, or loss of KRC protein in KRC-null mice, results in diminished IL-2 production. KRC physically associates with the c-Jun transcription factor and serves as a coactivator to augment AP-1–dependent IL-2 gene transcription

    Detecting Bioterror Attacks by Screening Blood Donors: A Best-Case Analysis

    Get PDF
    To assess whether screening blood donors could provide early warning of a bioterror attack, we combined stochastic models of blood donation and the workings of blood tests with an epidemic model to derive the probability distribution of the time to detect an attack under assumptions favorable to blood donor screening. Comparing the attack detection delay to the incubation times of the most feared bioterror agents shows that even under such optimistic conditions, victims of a bioterror attack would likely exhibit symptoms before the attack was detected through blood donor screening. For example, an attack infecting 100 persons with a noncontagious agent such as Bacillus anthracis would only have a 26% chance of being detected within 25 days; yet, at an assumed additional charge of 10pertest,donorscreeningwouldcost10 per test, donor screening would cost 139 million per year. Furthermore, even if screening tests were 99.99% specific, 1,390 false-positive results would occur each year. Therefore, screening blood donors for bioterror agents should not be used to detect a bioterror attack

    Detecting Bioterror Attacks by Screening Blood Donors: A Best-Case Analysis

    Get PDF
    To assess whether screening blood donors could provide early warning of a bioterror attack, we combined stochastic models of blood donation and the workings of blood tests with an epidemic model to derive the probability distribution of the time to detect an attack under assumptions favorable to blood donor screening. Comparing the attack detection delay to the incubation times of the most feared bioterror agents shows that even under such optimistic conditions, victims of a bioterror attack would likely exhibit symptoms before the attack was detected through blood donor screening. For example, an attack infecting 100 persons with a noncontagious agent such as Bacillus anthracis would only have a 26% chance of being detected within 25 days; yet, at an assumed additional charge of 10pertest,donorscreeningwouldcost10 per test, donor screening would cost 139 million per year. Furthermore, even if screening tests were 99.99% specific, 1,390 false-positive results would occur each year. Therefore, screening blood donors for bioterror agents should not be used to detect a bioterror attack

    Stoerfallanalyse

    Get PDF
    corecore